




**SOLAREN**  
ENERGY  
Bringing power with a passion



# **ENGINEERING RELIABILITY**

The Hidden Power of Proper  
Solar Cabling

Prepared By  
**Neil H. Pearce**

🌐 [www.solaren-power.com](http://www.solaren-power.com)

# TABLE OF CONTENTS

## 01

|                         |    |
|-------------------------|----|
| EXECUTIVE SUMMARY ..... | 03 |
|-------------------------|----|

## 02

|                                         |    |
|-----------------------------------------|----|
| INTRODUCTION: WHY CABLING MATTERS ..... | 04 |
|-----------------------------------------|----|

## 03

|                             |    |
|-----------------------------|----|
| TECHNICAL FOUNDATIONS ..... | 05 |
|-----------------------------|----|

## 04

|                                  |    |
|----------------------------------|----|
| THE PHILIPPINE ENVIRONMENT ..... | 06 |
|----------------------------------|----|

## 05

|                                       |    |
|---------------------------------------|----|
| THE TEN GOLDEN RULES OF CABLING ..... | 07 |
|---------------------------------------|----|

- **5.1 Rule 1:** Certified Solar Cable
- **5.2 Rule 2:** Correct Cable Sizing & Voltage Drop Control
- **5.3 Rule 3:** UV and Heat Resistance
- **5.4 Rule 4:** Routing, Support & Mechanical Protection
- **5.5 Rule 5:** Roof Penetrations & Edge Protection
- **5.6 Rule 6:** DC and AC Separation
- **5.7 Rule 7:** Fixings and Fasteners
- **5.8 Rule 8:** Labeling and Polarity Control
- **5.9 Rule 9:** Testing Before Energization
- **5.10 Rule 10:** Design for Maintenance Access

## 06

|                                   |    |
|-----------------------------------|----|
| CASE STUDIES FROM THE FIELD ..... | 10 |
|-----------------------------------|----|

- **6.1** Tarlac MAC Chicken Farm (100 kWp Grid-Tied)
- **6.2** BIR RR4 Pampanga Government Facility
- **6.3** Coastal Hotel Installation, Zambales
- **6.4** Observed Field Failures from Third-Party Installations

## 07

|                                 |    |
|---------------------------------|----|
| TESTING AND COMMISSIONING ..... | 13 |
|---------------------------------|----|

## 08

|                                  |    |
|----------------------------------|----|
| MAINTENANCE AND INSPECTION ..... | 14 |
|----------------------------------|----|

## 09

|                                        |    |
|----------------------------------------|----|
| SAFETY, COMPLIANCE, AND WARRANTY ..... | 15 |
|----------------------------------------|----|

## 10

|                                   |    |
|-----------------------------------|----|
| CLIENT INSPECTION CHECKLIST ..... | 16 |
|-----------------------------------|----|

## 11

|                  |    |
|------------------|----|
| CONCLUSION ..... | 17 |
|------------------|----|

## 12

|                  |    |
|------------------|----|
| REFERENCES ..... | 18 |
|------------------|----|

## 13

|                        |    |
|------------------------|----|
| ACKNOWLEDGEMENTS ..... | 21 |
|------------------------|----|

## 14

|                       |    |
|-----------------------|----|
| RELATED READING ..... | 22 |
|-----------------------|----|



## EXECUTIVE SUMMARY

Every solar project begins and ends with current flow through cables that rarely get attention. Yet cable integrity determines efficiency, safety, and long-term ROI.

This white paper explains how Solaren engineers design and install cabling systems that exceed international standards and deliver consistent performance across Philippine conditions. It presents the Ten Golden Rules of Cabling and the field insights behind them.

# INTRODUCTION: WHY CABLING MATTERS

Panels and inverters get the credit, but cables carry the burden.

A single poor termination or under-sized conductor can waste energy, create hot spots, or void warranties.



Independent studies estimate that up to 15 % of all PV faults stem from wiring and connector issues.<sup>11</sup> For commercial systems, that translates to energy losses worth millions of pesos over a plant's lifetime.

At **Solaren**, cabling is treated as an essential, properly engineered item, not a cost-cutting exercise. Gathered from extensive installations nationwide.

# TECHNICAL FOUNDATIONS

Electrical energy follows physical laws that never bend for budget shortcuts.

Key parameters include:

- Voltage Drop: Must stay below 1.5 % per string.
- Current Carrying Capacity: Determined by conductor cross-section, insulation rating, and ambient temperature.
- Thermal Rise: Every 1 °C above 25 °C increases resistance  $\approx 0.4 \%$ <sup>[3]</sup>

For a DC circuit operating at 600 V and 140 A ( $\approx 84$  kW continuous), a 1% voltage drop results in 840 W of continuous power loss, equivalent to  $\sim 7,350$  kWh per year, or roughly ₱90,000 in lost yield.



# THE PHILIPPINE ENVIRONMENT

Tropical humidity, heat, and salt exposure accelerate cable aging. Roof surfaces often exceed 70 °C by midday; coastal plants face chloride corrosion and UV breakdown.<sup>[4]</sup>



Solaren's field data shows that standard PVC-jacketed wire loses flexibility within 18 months outdoors.<sup>[5]</sup>



That is why all Solaren designs specify cross-linked polyethylene (XLPE) insulation rated at 90 °C continuous, 120 °C peak, and UV-resistant.<sup>[6]</sup>



# THE TEN GOLDEN RULES OF CABLING

## **RULE 1: CERTIFIED SOLAR CABLE**

Only TÜV-approved or IEC 62930-certified solar cable rated for 1,000 V or 1,500 V DC is used. Building wire and general-purpose cable are excluded.<sup>[1]</sup>

Certified PV cable is designed for continuous DC voltage, elevated temperatures, and prolonged UV exposure. Non-rated cable accelerates insulation degradation and increases long-term risk.

## **RULE 2: CORRECT CABLE SIZING AND VOLTAGE DROP CONTROL**

Cable cross-section is selected based on current, route length, ambient temperature, and installation method. Voltage drop is maintained below 1.5 % per string under full-load conditions.<sup>[2]</sup>

Undersized conductors increase resistive loss and operating temperature. In many systems, upsizing by one gauge recovers cost through higher yield and reduced thermal stress.

## **RULE 3: UV AND HEAT RESISTANCE**

All exposed cable jackets are rated for  $\geq 90$  °C continuous operation and certified UV-resistant for outdoor use.

Roof-mounted systems routinely operate beyond standard ambient assumptions. Reflective surfaces and adequate air gaps reduce conductor surface temperature and extend insulation life.

### **RULE 4: ROUTING, SUPPORT, AND MECHANICAL PROTECTION**

Cable routes are planned to minimize length, loop area, and mechanical stress. All spans are supported at intervals not exceeding 300 mm.

Unrestrained cabling is subject to movement from wind and thermal cycling. Poor routing and edge contact are common causes of insulation abrasion and latent DC faults.

### **RULE 5: ROOF PENETRATIONS AND EDGE PROTECTION**

All roof penetrations are protected using suitable glands or EPDM grommets. Cables crossing metal edges are sleeved or isolated with lined supports.

Unprotected edges create high-risk abrasion points. Minor jacket damage can progress into ground faults or arcing under sustained DC voltage

### **RULE 6: DC AND AC SEPARATION**

DC and AC cabling routes are physically segregated, maintaining a minimum spacing of 150 mm when installed in parallel.

Separation reduces inductive interference, simplifies inspection, and lowers the risk of cross-system faults during maintenance.

### **RULE 7: FIXINGS AND FASTENERS**

All outdoor fasteners are specified as AISI 304 or AISI 316 stainless steel.<sup>[8]</sup> Cable ties are UV-stabilized PA12 with a design life exceeding 25 years.<sup>[9]</sup>

Inferior metals and plastics embrittle rapidly in tropical conditions, leading to loss of support and secondary insulation damage.

### **RULE 8: LABELING AND POLARITY CONTROL**

All DC conductors are clearly identified by polarity using UV-stable heat-shrink labels. Positive conductors are marked red; negatives black.

Durable labeling reduces commissioning errors and prevents reverse-polarity connections during maintenance or future system expansion.

### **RULE 9: TESTING BEFORE ENERGIZATION**

Each string is tested prior to energization for polarity, continuity, and insulation resistance exceeding  $40\text{ M}\Omega$ .<sup>[10]</sup>

Testing confirms installation integrity before load is applied. Protection devices limit consequences but do not correct poor workmanship.

### **RULE 10: DESIGN FOR MAINTENANCE ACCESS**

Cable routes and terminations are designed to remain accessible without removing modules.

Accessible systems are inspected more consistently, reducing O&M cost and enabling early detection of degradation before failure occurs.

# CASE STUDIES FROM THE FIELD



- \* High-temperature aluminum roof.
- \* Using bifacial modules and SMA inverters, Solaren specified XLPE  $1 \times 10 \text{ mm}^2$  conductors in parallel.
- \* Measured voltage drop: 1.22 %. After two years of operation, visual inspection and insulation resistance testing showed no measurable insulation degradation.

## CASE 1: TARLAC MAC CHICKEN FARM (100 KWP GRID-TIED)

- \* Legacy contractor used mixed wire gauges. Solaren re-terminated 148 strings, restoring inverter efficiency.



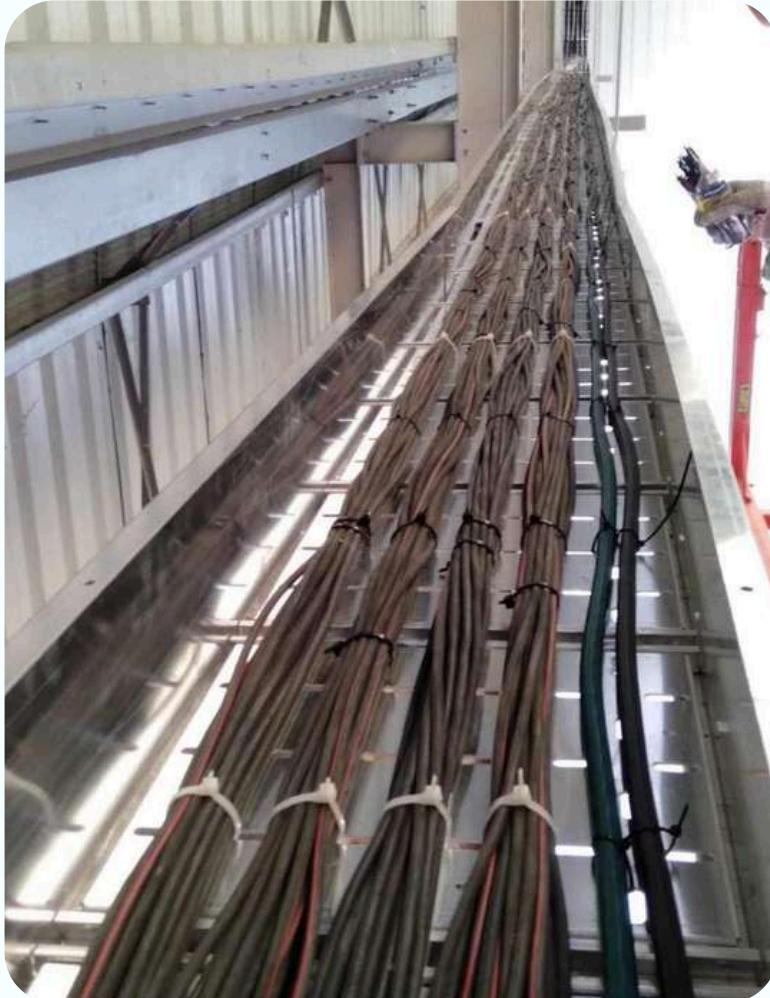
## CASE 2: BIR RR4 PAMPANGA GOVERNMENT FACILITY



- \* Salt mist corroded mild-steel saddles within 12 months. Replaced with 316 stainless supports; life extended > 25 years.

## CASE 3: COASTAL HOTEL IN ZAMBALES

## OBSERVED FIELD FAILURES (THIRD-PARTY INSTALLATIONS)




- CORRECTLY WIRED AND TAGGED RAPID SHUTDOWN SAFETY DEVICE



- TROUBLESHOOTING DEFECTIVE DC CABLING FOLLOWING A SERVICE CALLOUT TO AN OLD SYSTEM (THIRD PARTY)

DC-side thermal damage caused by improper termination and execution. Inadequate crimping, connector incompatibility, or poor mechanical support can create localized resistance, leading to overheating and arcing.



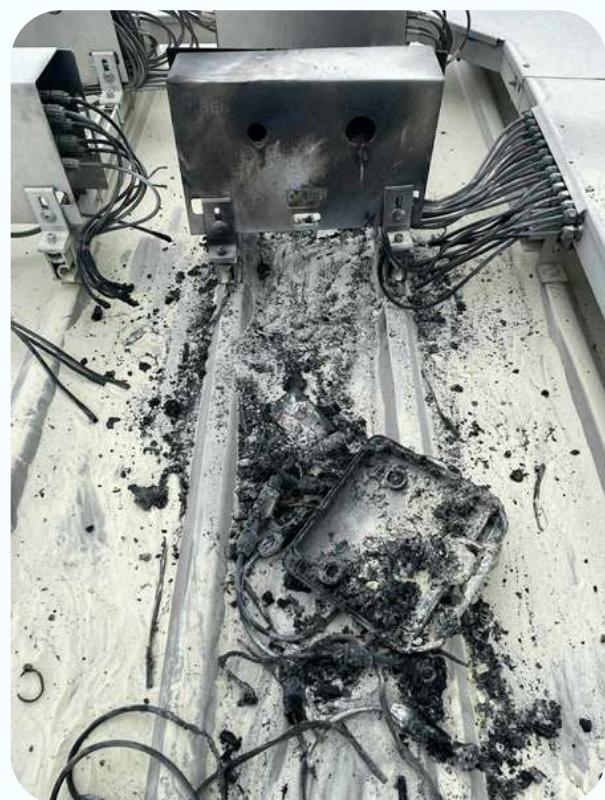
- WIREWAYS WITH CORRECTLY BUNDLED, ARRANGED AND TAGGED DC WIRING (COMMERCIAL PV SYSTEM). CREDIT SOLAREN

AC-side termination failure at a molded case circuit breaker. Loose or improperly torqued conductors resulted in overheating at the terminals. In this instance, the protective device operated correctly and tripped the circuit, preventing wider system damage.

These failures underscore that protection devices mitigate consequences but do not compensate for poor workmanship. Correct cabling design, execution, and verification remain the primary safeguards against fire and asset loss.

### DC Cable Insulation Damage Due to Mechanical Abrasion

This image shows DC cabling routed beneath a photovoltaic module without adequate edge protection or mechanical clearance. Repeated thermal expansion and vibration caused abrasion against the metal support structure, leading to insulation damage.


Such defects are typically hidden from routine visual inspection and may remain undetected until ground faults, arcing, or inverter protection events occur. Proper cable routing, support spacing, and protective sleeving are essential to prevent this failure mode.



- THE CONSEQUENCES OF INCORRECT TERMINATION OF AC CABLEING. THANKFULLY, THE CIRCUIT BREAKER DID ITS WORK EFFECTIVELY HERE, AND TRIPPED. LOW QUALITY OFTEN DO NOT TRIP.



- THE RESULT OF INCORRECT DC TERMINATION/INSTALLATION FOUND ON A THIRD PARTY CALLOUT VISIT



# TESTING AND COMMISSIONING

Every Solaren project follows a verification checklist:

| TEST                  | INSTRUMENT    | ACCEPTABLE VALUE | PURPOSE                     |
|-----------------------|---------------|------------------|-----------------------------|
| Polarity              | Multimeter    | Correct +/-      | Prevent inverter damage     |
| Insulation Resistance | Megger 1000 V | > 40 MΩ          | Detect moisture ingress     |
| Continuity            | Ohmmeter      | < 1 Ω            | Confirm conductor integrity |
| IV-Curve              | Tracer        | > 95 % expected  | Confirm array health        |
| Thermal Scan          | IR Camera     | ΔT < 15 °C       | Identify hot spots          |



Results archived in Solaren Engineering Handover File and part of warranty record. [11]

# MAINTENANCE & INSPECTION

Under Solar Performance Care, cable inspections occur annually or semi-annually.

Tasks include visual check of conduits, torque testing, and thermal imaging during full load.

Loose MC4 connectors can cause arc faults > 1,000 °C; preventive inspection avoids failures.<sup>[12]</sup>



# SAFETY, COMPLIANCE AND WARRANTY

Standards observed:

- IEC 60364-7-712 – Solar PV Power Supply Systems.<sup>[13]</sup>
- IEC 62930 – Electric Cables for PV Systems.
- NEC 690 – Solar Photovoltaic Systems.<sup>[14]</sup>
- DOE Philippines Renewable Energy Guidelines.<sup>[15]</sup>
- PCAB Safety Regulations.<sup>[16]</sup>

Compliance ensures 25-year warranty validity.



# CLIENT CHECKLIST

Inspection checklist for client reference:

- Correct cable type (TÜV/IEC rated)
- Voltage drop < 1.5 %
- Labels legible
- Roof penetrations sealed
- DC/AC paths separated
- Conduits intact
- Thermal scan complete



# CONCLUSION

Cabling defines system reliability. Every Solaren installation applies engineering discipline: no shortcuts, no hidden faults.

Proper cabling is invisible when it works, unforgettable when it fails. Solaren's systems deliver safety, performance, and trust for decades.



# REFERENCES

## [1] PV Faults Attributed to Cabling and Connectors

- Citation: TÜV Rheinland. "Defective Connectors a Main Cause of PV System Failures." **PV Magazine**, 2018.
- Link: <https://www.pv-magazine.com/2018/03/19/tuv-rheinland-defective-connectors-a-main-cause-of-pv-system-failures/>

## [2] Voltage Drop Design Limits

- Citation: "Calculating Voltage Drop in Solar Systems." **Solar Power World**, 2019.
- Link: <https://www.solarpowerworldonline.com/2019/07/calculating-voltage-drop-in-solar-systems/>

## [3] Temperature Effect on Conductor Resistance

- Citation: "Temperature Coefficient of Resistance." **All About Circuits**.
- Link: <https://www.allaboutcircuits.com/textbook/direct-current/chpt-12/temperature-coefficient-resistance/>

## [4] Rooftop Surface Temperatures

- Citation: National Renewable Energy Laboratory (NREL). "Measured Rooftop-Module Temperatures for Various Climate Zones and Mounting Methods." 2011.
- Link: <https://www.nrel.gov/docs/fy11osti/50170.pdf>

## [5] PVC Insulation Performance

- Citation: "PVC vs. XLPE: What's the Difference?" HELUKABEL.
- Link: <https://www.helukabel.com/us/company/blog/pvc-vs-xlpe-whats-the-difference>

## **[6] XLPE Suitability for PV Systems**

- Citation: "What to Know About Solar Wire and Cable Selection." Solar Power World, 2022.
- Link: <https://www.solarpowerworldonline.com/2022/05/what-to-know-about-solar-wire-and-cable-selection/>

## **[7] PV Cable Certification**

- Citation: International Electrotechnical Commission. IEC 62930:2017 – Electric Cables for Photovoltaic Systems.
- Link: [<https://webstore.iec.ch/en/publication/28067>]

## **[8] Stainless Steel Fasteners**

- Citation: "Choosing the Right Stainless Steel: 304 vs 316." Aalco Metals.
- Link: <https://www.aalco.co.uk/blog/304-vs-316>

## **[9] UV-Stable Cable Ties**

- Citation: "Solar Cable Ties Made of Polyamide 12 (PA12)." HellermannTyton.
- Link: <https://www.hellermanntyton.com/industries/solar>

## **[10] Insulation Resistance Testing**

- Citation: "A Guide to Insulation Resistance Testing for PV Systems." Fluke Corporation.
- Link: <https://www.fluke.com/en-us/learn/blog/insulation-testers/insulation-testing-pv-systems>

## **[11] Internal Engineering Records**

- Citation: Solaren Engineering Field Manual (2025 Edition).
- Link: Referenced for methodology consistency; not used as sole evidence for claims.

## **[12] Arc-Fault Temperatures**

- Citation: Fraunhofer ISE. "A Review of Arc-Fault Detection and Interruption in Photovoltaic Systems." *Solar Energy Materials and Solar Cells*, 2016.
- Link:  
<https://www.ise.fraunhofer.de/en/publications/proceedings-and-conference-papers/conference-papers/2016/a-review-of-arc-fault-detection-and-interruption-in-photovoltaic-systems.html>

## **[13] IEC PV Installation Standards**

- Citation: International Electrotechnical Commission. IEC 60364-7-712:2017 – Electrical Installations of Buildings – Solar PV Power Supply Systems.
- Link: <https://webstore.iec.ch/en/publication/28213>

## **[14] NEC Article 690**

- Citation: National Fire Protection Association. NFPA 70 – National Electrical Code, Article 690.
- Link: <https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70>

## **[15] DOE Philippines Guidelines**

- Citation: Republic of the Philippines, Department of Energy. "Renewable Energy Policies and Programs."
- Link: <https://www.doe.gov.ph/renewable-energy-policies-and-programs>

## **[16] PCAB Safety Regulations**

- Citation: Republic of the Philippines, Department of Trade and Industry. "Philippine Contractors Accreditation Board (PCAB) – Rules and Regulations."
- Link: <https://www.dti.gov.ph/ciap/pcab/>

# ACKNOWLEDGEMENTS

Prepared by Solaren Engineering Division  
Contributors: Project Engineering, QA, and  
O&M Division

Photos and figures: Solaren Project Archive  
(2018–2025)

MEDIA



Video showing DC cable arcing at a solar Farm. Credit: SparkyNinja

## RELATED READING

1. Why Compliance Matters for Your Commercial Solar Installation in the Philippines?